This project aims to capitalize on the existing commercial demand for improved power sources for unmanned aerial vehicles (UAV or “drones”), by advancing fuel cell design and manufacturing. Rochester Institute of Technology (RIT) is collaborating with a local Monroe County company, Falcon Fuel Cells Inc. (Falcon), to develop a process to manufacture the crucial membrane-electrode assemblies (MEAs) needed for high-temperature proton exchange membrane (HT-PEM) fuel cells, and required system components capable of powering a UAV. A mobile system comprised of an HT-PEM fuel cell integrated with a propane fuel reformer has already been demonstrated by project team members in their prior work. However, further progress toward a validated MEA fabrication process is needed to demonstrate commercial scale manufacturability of such MEAs, and the fuel cell powered system as a whole. This project will provide critical design methods and data to advance the fabrication of the MEA component of the fuel cell, and the manufacturability of fuel cell propulsion systems for UAVs. The outcomes of this research could eventually lead to commercialization opportunities for Falcon and additional technological research advances for RIT.